Home Patent Forecast® Sectors Log In   Contact  
How it works Patent Forecast® Sectors Insights
Menu
Enjoy your FREE PREVIEW which shows only 2022 data and 25 documents. Contact Patent Forecast for full access.        

Consumer Sleep Technology

Search All Applications in Consumer Sleep Technology


Application US20190143073


Published 2019-05-16

Methods And Apparatus For Inducing Or Modifying Sleep

A neuromodulator may output stimuli that causes a user to fall asleep faster than the user would in the absence of the stimuli. Alternatively, the stimuli may modify a sleep state or behavior associated with a sleep state, or may cause or hinder a transition from a waking state to a sleep state or from a sleep state to another sleep state. The neuromodulator may take electroencephalography measurements. Based on these measurements, the neuromodulator may detect, in real time, instantaneous amplitude and instantaneous phase of an endogenous brain signal. The neuromodulator may output stimulation that is, or that causes sensations which are, phase-locked with the endogenous brain signal. In the course of calculating instantaneous phase and amplitude, the neuromodulator may perform an endpoint-corrected Hilbert transform. The stimuli may comprise auditory, visual, electrical, magnetic, vibrotactile or haptic stimuli.



Much More than Average Length Specification


View the Patent Matrix® Diagram to Explore the Claim Relationships

USPTO Full Text Publication >

3 Independent Claims

  • 1. A method comprising: (a) taking electroencephalography measurements of an endogenous electrical signal that originates in a brain of a user; (b) calculating a set of one or more estimates of (i) instantaneous phase of the endogenous signal and (ii) instantaneous amplitude of the endogenous signal; (c) producing stimulation in such a way that the stimulation causes the user to undergo, more quickly than the user would in the absence of the stimulation, a transition from wakefulness of the user to sleep onset of the user, which transition (i) starts when the user closes his or her eyes while awake, and (ii) ends with the sleep onset; and (d) controlling, based on the set of one or more estimates of instantaneous phase and instantaneous amplitude, timing of one or more changes in the stimulation.

  • 12. An apparatus comprising: (a) one or more sensors that are configured to take electroencephalography measurements of an endogenous electrical signal that originates in a brain of a user; (b) one or more transducers that are configured to produce stimulation; and (c) one or more computers that are programmed (i) to calculate a set of one or more estimates of (A) instantaneous phase of the endogenous signal and (B) instantaneous amplitude of the endogenous signal, (ii) to control the one or more transducers in such a way that the stimulation causes the user to undergo, more quickly than the user would in the absence of the stimulation, a transition from wakefulness of the user to sleep onset of the user, which transition (A) starts when the user closes his or her eyes while awake, and (B) ends with the sleep onset, and (iii) to control, based on the set of one or more estimates of instantaneous phase and instantaneous amplitude, timing of one or more changes in the stimulation.

  • 20. An apparatus comprising: (a) one or more sensors that are configured to take electroencephalography measurements of an endogenous electrical signal that originates in a brain of a user; (b) one or more transducers that are configured to produce stimulation; and (c) one or more computers that are programmed (i) to calculate a set of one or more estimates of (A) instantaneous phase of the endogenous signal and (B) instantaneous amplitude of the endogenous signal, (ii) to control the one or more transducers in such a way that the stimulation causes delta/total spectrum ratio of the endogenous signal to increase more rapidly than would occur in the absence of the stimulation, and (iii) to control, based on the set of one or more estimates of instantaneous phase and instantaneous amplitude, timing of one or more changes in the stimulation.