Home Patent Forecast® Sectors Log In   Contact  
How it works Patent Forecast® Sectors Insights
Menu
Enjoy your FREE PREVIEW which shows only 2022 data and 25 documents. Contact Patent Forecast for full access.        

Biodegradable Packaging

Search All Applications in Biodegradable Packaging


Application US20190092898


Published 2019-03-28

Dynamic Urea Bonds With Fast Hydrolytic Kinetics For Polymers

The present invention relates to polymers having dynamic urea bonds and more specifically to polymers having hindered urea bonds (HUBs) with fast hydrolytic kinetics. These urea bonds are aryl-substituted, i.e. aromatic-substituted hindered urea bonds, that demonstrate pH independent hydrolytic kinetics, such that they consistently and rapidly hydrolyze in water from pH 2 to 11. The urea bond dissociation for these materials is generally such that k−1>h−1, which is two orders of magnitudes faster than for aliphatic hindered ureas. The present invention also relates to hydrolytically reversible or degradable linear, branched or network polymers incorporating these HUBs and to precursors for incorporation of these HUBs into these polymers. The technology can be applied to and integrated into a variety of polymers, such as polyureas, polyurethanes, polyesters, polyamides, polycarbonates, polyamines, and polysaccharides to make linear, branched, and cross-linked polymers. Polymers incorporating these HUBs can be used in a wide variety of applications including for example, environmentally compatible packaging materials and biomedical applications, such as drug delivery systems and tissue engineering. In other embodiments, the HUBs can be used in self-healing polymers.



Much More than Average Length Specification


View the Patent Matrix® Diagram to Explore the Claim Relationships

USPTO Full Text Publication >

8 Independent Claims

  • 1. A hydrolysable polymer comprising a hindered urea bond functional group corresponding to the following Formula (I) wherein R1, R2, and R3 are independently selected from —(C1-C20)alkyl, —(C3-C10)cyclolalkyl, —(C1-C20)alkyl(C3-C10)cycloalkyl, —(C3-C10)cycloalkyl(C1-C20)alkyl, —Ar2, —(C1-C20)alkyl-Ar2, —C2-C20)alkyl-PEG-(C2-C20)alkyl, and H; R4 is selected from H and —(C1-C20)alkyl; Ar1 and Ar2 are independently selected from phenyl, naphthyl, a 5 or 6-membered heteroaromatic ring containing one or more heteroatoms selected from nitrogen, oxygen, sulfur, and combinations thereof, and a 7 to 10-membered fused bicyclic heteroaromatic ring containing one or more heteroatoms selected from nitrogen, oxygen, sulfur, and combinations thereof, wherein each Ar1 or Ar2 is optionally substituted with one or more substituents selected from F, Cl, Br, I, —(C1-C8)alkyl, —(C3-C8)cycloalkyl, —OR5, —CN, —SR5, —SOR5, —SO2R5, —COOR5, —COR5, —CONR5R5, and —NR5COR5—, wherein R5 is selected from H and —(C1-C8)alkyl.

  • 8. (canceled)

  • 9. (canceled)

  • 12. (canceled)

  • 13. (canceled)

  • 17. (canceled)

  • 26. A hydrolysable hindered urea bond-containing polymer comprising recurring units from: (a) a hindered amine monomer containing two or more hindered amine functional groups, and (b) an aromatic isocyante monomer containing two or more aromatic isocyanate groups.

  • 28. A hydrolysable hindered urea bond-containing polymer made by a process comprising; (a) reacting a hindered amine monomer containing two or more hindered amine functional groups, and (b) an aromatic isocyante monomer containing two or more aromatic isocyanate groups.