Home Patent Forecast® Sectors Log In   Contact  
How it works Patent Forecast® Sectors Insights
Menu
Enjoy your FREE PREVIEW which shows only 2022 data and 25 documents. Contact Patent Forecast for full access.        

AI Biotech/Diagnostics: Other Innovation

Search All Patents in AI Biotech/Diagnostics: Other Innovation


Patent US9072887


Issued 2015-07-07

Self-adaptive Bio-signal And Modulation Device

A sensor-effector system includes an array of sensor-effector transducers providing a plurality of sensed signals and applying a plurality of effector signals. The array provides signals to input signal conditioning circuitry which digitizes and filters the plurality of sensed signals. A processor receives the digitized signals, and processes them to generate multiple feature vectors. It also analyzes the feature vectors to identify patterns and classify the identified patterns and generates at least one response vector resulting from the recognized pattern. The response vector is applied to output signal conditioning circuitry, coupled which converts the response vector to at least one analog signal which is applied as an effector signal to the array of sensor-effector transducers.



Much More than Average Length Specification


View the Patent Matrix® Diagram to Explore the Claim Relationships

USPTO Full Text Publication >

3 Independent Claims

  • 1. A flexible sensor-effector circuit comprising: a first flexible transistor having source and drain electrodes defining a first conductive path and a first gate electrode configured to control the conductivity of the first conductive path; a second flexible transistor having source and drain electrodes defining a second conductive path and a second gate electrode configured to control the conductivity of the second conductive path; and a transducer coupled to the drain electrode of the first transistor and to the gate electrode of the second transistor, wherein the first transistor is coupled to an effector circuit and the second transistor is coupled to a sensor circuit.

  • 8. An array of sensor-effector transducers, comprising: a flexible substrate; a plurality of flexible electrical sensor-effector circuits, each comprising: a first flexible transistor formed on the substrate having source and drain electrodes defining a first conductive path and a first gate electrode configured to control the conductivity of the first conductive path; a second flexible transistor formed on the substrate having source and drain electrodes defining a second conductive path and a second gate electrode configured to control the conductivity of the second conductive path; a sensor-effector transducer coupled to the drain electrode of the first transistor and to the gate electrode of the second transistor, wherein the first transistor is coupled to an effector circuit and the second transistor is coupled to a sensor circuit; a flexible select transistor having a conductive path defined by a source electrode and a drain electrode and a select gate electrode configured to control the conductive path of the select transistor, wherein the source electrode of the select transistor is coupled to the sensor-effector transducer and the drain electrode of the select transistor is coupled to the drain electrode of the first transistor and to the gate electrode of the second transistor and wherein the gate electrode is coupled to a select signal and configured to control the conductive path of the select transistor in response to the select signal.

  • 12. A sensor-effector system comprising: an array of sensor-effector transducers for providing a plurality of sensed signals and for applying a plurality of effector signals; input signal conditioning circuitry, coupled to the array of sensor-effector transducers for digitizing the plurality of sensed signals; a processor coupled to the array of sensor-effector transducers for receiving the digitized signals, the processor including computer program instructions which cause the processor: to process the plurality of signals to transform the plurality of digitized signals into multiple feature vectors; to analyze the multiple feature vectors to identify patterns in the multiple feature vectors and to classify the identified patterns; and to generate at least one response vector resulting from the recognized pattern; and output signal conditioning circuitry, coupled to the processor to convert the response vector to at least one analog signal and to apply the at least analog signals as at least one of the plurality of effector signals applied to the array of sensor-effector transducers.