Home Patent Forecast® Sectors Log In   Contact  
How it works Patent Forecast® Sectors Insights
Menu
Enjoy your FREE PREVIEW which shows only 2022 data and 25 documents. Contact Patent Forecast for full access.        

AI Biotech/Diagnostics: General Diagnostics

Search All Applications in AI Biotech/Diagnostics: General Diagnostics


Application US20190076070


Published 2019-03-14

Methods, Systems, And Devices For Calibration And Optimization Of Glucose Sensors And Sensor Output

A continuous glucose monitoring system may utilize externally sourced information regarding the physiological state and ambient environment of its user for externally calibrating sensor glucose measurements. Externally sourced factory calibration information may be utilized, where the information is generated by comparing metrics obtained from the data used to generate the sensor's glucose sensing algorithm to similar data obtained from each batch of sensors to be used with the algorithm in the future. The output sensor glucose value of a glucose sensor may also be estimated by analytically optimizing input sensor signals to accurately correct for changes in sensitivity, run-in time, glucose current dips, and other variable sensor wear effects. Correction actors, fusion algorithms, EIS, and advanced ASICs may be used to implement the foregoing, thereby achieving the goal of improved accuracy and reliability without the need for blood-glucose calibration, and providing a calibration-free, or near calibration-free, sensor.



Much More than Average Length Specification


View the Patent Matrix® Diagram to Explore the Claim Relationships

USPTO Full Text Publication >

1 Independent Claim

  • 1. A method of optimizing glucose sensor estimation for a glucose sensor used for measuring the level of glucose in the body of a user, said sensor including physical sensor electronics, a microcontroller, and a working electrode, the method comprising: periodically measuring, by the physical sensor electronics, electrode current (Isig) signals for the working electrode; performing, by the microcontroller, an Electrochemical Impedance Spectroscopy (EIS) procedure to generate EIS-related data for the working electrode; calculating, by the microcontroller, an adjusted calibration factor for the sensor based on the EIS-related data; calculating, by the microcontroller, an adjusted offset value for the sensor based on at least one of a stabilization time adjustment and a non-linear sensor response adjustment; and calculating, by the microcontroller, an optimized measured glucose value (SG) based on the adjusted calibration factor and the adjusted offset value, wherein SG=(adjusted calibration factor) x (Isig+adjusted offset value).